首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1567篇
  免费   221篇
  国内免费   574篇
化学   2188篇
晶体学   6篇
力学   1篇
综合类   12篇
数学   1篇
物理学   154篇
  2024年   2篇
  2023年   8篇
  2022年   26篇
  2021年   48篇
  2020年   85篇
  2019年   72篇
  2018年   76篇
  2017年   45篇
  2016年   87篇
  2015年   70篇
  2014年   84篇
  2013年   135篇
  2012年   104篇
  2011年   95篇
  2010年   105篇
  2009年   101篇
  2008年   99篇
  2007年   124篇
  2006年   106篇
  2005年   107篇
  2004年   102篇
  2003年   105篇
  2002年   85篇
  2001年   70篇
  2000年   66篇
  1999年   60篇
  1998年   40篇
  1997年   32篇
  1996年   39篇
  1995年   39篇
  1994年   25篇
  1993年   20篇
  1992年   10篇
  1991年   18篇
  1990年   10篇
  1989年   8篇
  1988年   6篇
  1987年   9篇
  1986年   6篇
  1985年   3篇
  1984年   1篇
  1983年   1篇
  1982年   4篇
  1981年   10篇
  1980年   7篇
  1979年   3篇
  1978年   2篇
  1976年   1篇
  1973年   1篇
排序方式: 共有2362条查询结果,搜索用时 15 毫秒
81.
以活性炭为载体,采用浸渍法制备Ni-Sn-Cr/AC催化剂,在连续流动固定床反应器上研究其对乙酸甲酯气相羰基化合成醋酐反应的催化性能。分别考察了Ni、Sn、Cr三种金属组分的负载量对催化活性的影响,进一步考察了反应压力、反应温度、反应时间对反应的影响。实验结果表明,在Ni9%-Sn12%-Cr6%/AC催化剂上,当反应温度205℃,压力5.5MPa,催化剂焙烧温度600℃,催化剂焙烧时间为4h的条件下,乙酸甲酯的转化率为38.8%,醋酐的选择性为81.1%。采用X射线衍射和元素分析技术分别对反应前和不同反应时间后的催化剂进行了表征。分析结果表明,Ni0是催化剂的主要活性中心,随着反应时间的延长,活性组分镍的流失现象比较严重,同时催化剂上出现积炭及载体骨架遭到破坏,是导致催化剂失活的主要原因。  相似文献   
82.
钯催化烯烃不对称羰基化反应的研究进展   总被引:1,自引:0,他引:1  
钯催化烯烃不对称羰基化反应是一种合成手性羰基化合物的有效方法之一,综述了近年来钯催化烯烃不对称羰基化反应的最新研究进展,重点讨论了配体、催化体系、反应条件等因素对烯烃羰基化反应的影响,并对烯烃不对称羰基化反应的区域选择性和对映选择性以及可能的反应机理进行了探讨.  相似文献   
83.
依据单电池测试结果和甲醇传质理论考察了甲醇溶液的浓度对被动式自呼吸直接甲醇燃料电池(DMFC)性能的影响.研究结果表明,电池的法拉第效率和能量转化效率会随着浓度的增大而降低,采用4mol/L的甲醇溶液实现了最大的放电功率13.9mW/cm^2,并能在60mA下稳定放电长达20h.这取决于电池运行过程中电极内部的甲醇传质和甲醇透过的共同作用.  相似文献   
84.
以氯铂酸和亚碲酸钠为前驱体,采用两步法在醇水体系下得到负载型Pt1Te1金属间化合物前驱体,通过热处理得到负载型金属间化合物电催化剂Pt1Te1/XC-72.采用X射线衍射(XRD)、透射电子显微镜(TEM)、选区电子衍射(SAED)、电子能谱(EDS)和循环伏安方法(CV)对催化剂进行表征.结果表明:所得产物呈有序金属间化合物Pt1Te1结构,平均粒径4.5nm,在碳载体上具有很好的分散性;负载型金属间化合物电催化剂Pt1Te1/XC-72具有较高的电催化氧化甲醇活性,其优秀的催化氧化甲醇活性与Pt形成金属间化合物后所带来的几何及电子结构改变密切相关.  相似文献   
85.
Significant progress has been made in the last few years toward synthesizing highly dispersible inorganic catalysts for application in the electrodes of direct methanol fuel cells. In addition, research toward achieving an efficient catalyst supporting matrix has also attracted much attention in recent years. Carbon black- (Vulcan XC-72) supported Platinum and Platinum-Ruthenium catalysts have for long served as the conventional choice as the cathode and the anode catalyst materials, respectively. Oxygen reduction reaction at the cathode and methanol oxidation reaction at the anode occur simultaneously during the operation of a direct methanol fuel cell. However, inefficiencies in these reactions result in a generation of mixed potential. This, in turn, gives rise to reduced cell voltage, increased oxygen stoichiometric ratio, and generation of additional water that is responsible for water flooding in the cathode chamber. In addition, the lack of long-term stability of Pt-Ru anode catalyst, coupled with the tendency of Ru to cross through the polymer electrolyte membrane and eventually get deposited on the cathode, is also a serious drawback. Another source of potential concern is the fact that the natural resource of Pt and the rare earth metal Ru is very limited, and has been predicted to become exhausted very soon. To overcome these problems, new catalyst systems with high methanol tolerance and higher catalytic activity than Pt need to be developed. In addition, the catalyst-supporting matrix is also witnessing a change from traditionally used carbon powder to transition metal carbides and other high-performance materials. This article surveys the recent literature based on the advancements made in the field of highly dispersible inorganic catalysts for application in direct methanol fuel cells, as well as the progress made in the area of catalyst-supporting matrices.  相似文献   
86.
Resveratrol is a polyphenol that has numerous interesting biological properties, but, per os, it is quickly metabolized. Some of its metabolites are more concentrated than resveratrol, may have greater biological activities, and may act as a kind of store for resveratrol. Thus, to understand the biological impact of resveratrol on a physiological system, it is crucial to simultaneously analyze resveratrol and its metabolites in plasma. This study presents an analytical method based on UHPLC-Q-TOF mass spectrometry for the quantification of resveratrol and of its most common hydrophilic metabolites. The use of 13C- and D-labeled standards specific to each molecule led to a linear calibration curve on a larger concentration range than described previously. The use of high resolution mass spectrometry in the full scan mode enabled simultaneous identification and quantification of some hydrophilic metabolites not previously described in mice. In addition, UHPLC separation, allowing run times lower than 10 min, can be used in studies that requiring analysis of many samples.  相似文献   
87.
以氯化铜、钼酸铵、苯酐、氯化铵、尿素和NaY分子筛为原料,采用苯酐-尿素法制备了酞菁铜/分子筛复合物CuPc/Y.采用等体积浸渍法将金属钯担载在CuPc/Y上制备了Pd-CuPc/Y催化剂,并在醋酸水溶液中考察了其催化甲烷选择氧化合成甲醇反应的性能,结果表明,催化性能与反应温度、溶剂中CH3COOH与H2O的混合比例、对苯醌用量、反应时间等因素有关,在0.5%Pd-0.5%CuPc/Y添加量0.5 g、CH3COOH与H2O体积比4∶1、对苯醌用量1 000 μmol、反应时间3 h、反应温度150 ℃的条件下,甲醇的最佳生成量为1 840 μmol.Pd-CuPc/Y催化剂可以多次循环使用,但由于催化剂流失和催化剂表面的钯粒子聚集的原因,循环使用后的催化剂催化活性有所下降.Pd-CuPc/Y在醋酸溶液中催化甲烷选择氧化合成甲醇是亲电取代反应和活性氧物种氧化共同作用的结果.  相似文献   
88.
以制得的纳米Fe3O4颗粒作为载体,用还原法将还原出的Au与Pt分别负载到Fe3O4颗粒表面,制得纳米Pt/Au/Fe3O4复合材料。对Pt/Au/Fe3O4进行紫外可见光吸收光谱、透射电子显微镜、X射线衍射及光电子能谱等物理表征,结果表明,Au与Pt均匀地沉积到了Fe3O4纳米颗粒表面。对纳米Pt/Au/Fe3O4复合材料进行循环伏安扫描,当H2PtCl6的加入量达到8 mL时,Pt/Au/Fe3O4催化性能最佳;正扫电流峰ip与扫描速率的平方根v1/2线性相关,Pt/Au/Fe3O4催化氧化甲醇的过程受扩散控制;对催化剂进行201次循环伏安扫描,催化剂仍然能保持较好的催化性能且稳定性良好。因此,所合成催化剂Pt/Au/Fe3O4是一种具有良好化学稳定性的阳极催化剂材料。  相似文献   
89.
Some heteroaromatic esters were reduced to the corresponding alcohols by using a sodium borohydride–methanol system. The reduction was completed within 0.15–2.0 h in refluxing THF. The alcohol products were isolated after aqueous workup in moderate to excellent yield (48–97%).  相似文献   
90.
张晓鹏  陆世维 《催化学报》2005,26(6):453-454
 在硒催化下,苯胺和硫醇在一氧化碳和氧气作用下发生氧化羰基化反应直接生成相应的硫代氨基甲酸酯,收率从中等到良好. 反应在室温无溶剂条件下进行. 催化剂硒能方便地回收且能循环使用.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号